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related to an examin-

ation of the synthesis of cascade transrn~ssion line structures pro-

viding a polynomial insertion loss function phrased in terms of the

cosine of an electrical length. Certain features of nonuniqueness of

the synthesis were uncovered which, particularly in the case of

couplers, lead to a flexibility in design. This portion of the paper

includes a specific examination of couplers and concludes with some

general comments on transmission line synthesis.

VI. TRANSMISSION LINE COUPLERS

TRANSMISSION line coupler is composed of two

A
multisection conductors having reflection sym-

metry to one another about a longitudinal axis.

The two conductor system possesses symmetric and

antisymmetric modes with the symmetric characteristic

impedance for each section always being the higher one

for the two modes. If the structure is designed so that

the symmetric and antisymmetric networks are mutu-

ally dual, namely that every characteristic impedance

of the symmetric network corresponds to its inverse in

the antisymmetric network, then a hybrid structure

results. The hybrid action results from the opposed, but

equal magnitude, reflections from the two networks and

from their equal transfer functions. Signal fed into one

port admixes into the two modes and the reflections

interfere destructively back to the signal port and con-

structively to an adjacent port. There is no relative

change in the modal admixture of the transmitted wave

since both modal transfer functions are identical, so

that transmitted output occurs on the same conductor

as that of the input signal. There is no output at the

fourth port because of symmetry -antisymmetry mode

interference.

It suffices to consider just one of the two modes. We

shall consider only the symmetry mode, where its re-

flection factor is equal to the scattering coefficient to

the coupled port and the transfer function is the scatter-

ing coefficient to the transmission port. This result is

shown in Fig. 3 (see Part I) for a unit input wave ampli-

tude.

Often, the criterion of merit of a coupler is the flatness

of coupling as a function of frequency which finds alter-

native phrasing in terms of the flatness of the joint loss

function of the symmetric and antisymmetric networks.

It is not infrequent, however, that phase requires con-
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sideration, as in quadrature hybrids, and this too enters

into the synthesis formulation.

Let us consider now only the specification on coupling

magnitude. We desire a reactive network possessing sub-

stantially constant reflection over a large frequency

range. The network element we seek, ideally, is the

ideal transformer which we may realize with good ap-

proximation to within an additive transmission line

length over a broadband as a multisection quarter-wave

transformer.

The imperfect approximation of the finite quarter-

~~~ave transfornler to an ideal transformer may be repre-

sented in the fashion shown in Fig. 4. Here the quarter-

wave transformer is represented as a line length plus

the transformer 1/N plus still an added fourpole repre-

senting the fluctuation of the representation. The four-

pole has an identity representation plus small perturba-

tion terms and is characterized as follows

(I+a @
T, =

i-y 1+8 )
(35)

where a, ~, ~, and ~ are all small quantities. If the quar-

ter-wave transformer is terminated by an N: 1 trans-

former, the network is essential y matched and, ne-

glecting the additive line length, we obtain

‘“=+[’”-’)+’(%-’’7’2)1
so that

Ik++ - (7)’+ (+ - w)’

=NIIF_J

(36)

(37)

Fig. 4. Quarter-wa~e transformer equivalent.

If the a uarter-wave transformer is terminated by a

unit load the reflection is essentially equal to

()1V2— 1
‘1=– ——

.V’ + 1

~ 1-21”2( ~ [(a -0 + @ - 7)]) (38)
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so that

“(+%”-’)’1 ’39)
Examination of (37) and (39) shows that the quarter-

wave transformer operating into the appropriate mis-

tnatch to provide an overall network match produces

power reflection fluctuations about the matched condi-

tion which is of second degree in all the variables a, /3,

T, and 8. The quarter-wave transformer operating as a

constant mismatch, however, produces first-order fluc-

tuation terms in a and ~, which severely limits useful-

ness.

While a quarter-wave transformer tends to be the

design we seek for coupler instrumentation, neverthe-

less, there must be a significant modification to mini-

mize the value of (a — ti) compared to (~ — y). Even if

we do not obtain the quarter-wave transformer pre-

cisely in design we, nonetheless, expect to observe the

characteristic monotonic sequence of impedances asso-

ciated with the quarter-wave transformer. One is,

therefore, led to the observation at this point that a

symmetric coupler is less efficient in producing flat

coupling than is the asymmetric variant of the quarter-

wave transformer.

A pure transmission line cascade is always matched

for p = O and L – 1, therefore, has at least a double root

at the origin. Since the cascade, by intent, has the wid-

est possible mismatch in frequency, good coupler design

dictates that there be no other roots of L – 1 on the

/ a

solutions by the following argument. A transformer

transforms a matched load into one having :an essen-

tially fixed value of reflection. An equally goocl solution

for the coupler, however, is that transformation which

takes a matched load into one having a substantia~ly

circular reflection locus in the reflection plane about the

origin as a center. The degree of multiplicity of the

variant syntheses relates to the possible number of

admissible loci.

M’e may now show that multiple basic patterns occur

only for n 23. In discussing basic patterns we sh,,dl

recall that imaginary roots of L — 1 are simple for

]PI 21 and that simple root locus transformations m:Y

be employed to carry them through the point at infinity

to the real axis. In our considerations, therefore, we

shall make little distinction between real roots and thclse

imaginary roots for ] p I ~ 1.

If n = 1 then L – 1 is of second degree and the require-

ment of double roots at the origin requires that

L–IMP’.

If n =2, two roots are again consigned to the origin and

the two remaining roots, not enough for a quartet, fall

on the real axis. For both n = 1 and 2, k(p) is dlefined to

within inversion symmetry of its roots so that there is

but one basic pattern in each case.

If n =3, L – 1 is of sixth degree and two types of root

formations exist. 1) The roots, less the two at the origin,

form a complex quartet still yielding but one basic

root pattern. 2) The remaining four roots split up on

the real axis; two unequal positive roots and their ccr-

responding negatives. This last case yields two basic

patterns as we may now observe. Let # = O, a, b be the

three independent roots of L – 1. We may then have the

following

)(P(P–dl+P’dm P–41+P2 —b—
~1 + b’ )

k(p) = —
D(p)

(Pp-”dl+p’Q=
<1 +

k(p) = ——–——
)( b

=j p+dl+p’—-
<1 + b’ )

D(p)

(-M.lL)

(4Clb)

imaginary axis for ] P [ <1. In virtue of the results of the

last section, the premises of coupler design yield the

greatest number of basic root patterns and produce, in

contrast to optimum quarter-wave transformers and

transmission line filters, the greatest multiplicity of

syntheses.

Lfultiple syntheses, as we shall show by example, do

not as a rule maintain the monotonic impedance se-

quence ascribed to the quarter-wave transformer and

thus are not as qualitatively evident from physical

considerations in their application to couplers. One may

gain some insight into the mechanism of these other

The root pattern chosen to form k(p) in (40a) is O, a, b,

whereas the root pattern in (40b) is O, a, –-b.

For n =4, L – 1 is of eighth degree and the root forma-

tion is for one case a pair at the origin, a quartet of

complex roots, and a pair on the real axis. A more con-

plex case might put more roots on the real axis and eli m-

inate the complex quartet. In any event, n >3 always

leads to multiplicity with a possible nonuniqueness

occurring for n = 3.

As a final comment on coupler design, there is at

present no assurance that variant syntheses all lead to

admissible coupler designs. Since the symmetric mode
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impedances are always greater than the corresponding

impedances of the antisymmetric mode, a contradiction

would occur if synthesis required a symmetric imped-

ance less than unity since the dual would require an

antisymmetric impedance greater than unity. An acces-

sory requirement on coupler synthesis, therefore, is that

all impedances of a symmetric mode array be greater

than unity.

VII. EXAMPLE OF COUPLER DESIGN

The identification of couplers with quarter-wave

transformers motivates a choice of variables v = cos O

which is more sensitive to a 90° structure than is sin O.

Let it be required to synthesize the loss function such

that it is equal to a constant plus some even polynomial

~,,,(u). Since L – 1 = O when v = 1 the loss function takes

the form

f2?L(v)

L= K–(K–l)—

f,.(l)
(41)

where ~z~(v) <~Z~(l) for O <v< 1. For a Chebyshev de-

parture ~Z~(v) = T,,z(av), where a ~ 1, so that

Tn’(av)
L(v) =K–(K–l)—

Tn’(a) “
(42)

Let it be required to construct a four section Cheby-

shev coupler having a coupling of 3.01 t 0.1 dB. We ob-

serve from (42) that

L Inclx = K-3.11 dB

Lmin = K - ‘K - 1)~2.91 dB.
Tti’(a)

We obtain’a=1.1132. Since av = i-1 are the band edges

of (42), we obtain these edges by the relationship

cos 6 = f l/a. The coupler has a band ranging from

0=26.06° to 0=153.94°; a spread of 5.9:1.

Since p’ =V2 – 1, we find from (42)

\ W) [2
L–1

——
L

–#[13.885@+33.129P4 +27.383&+9.0916]

= 1 – [13.885! 8+33.129 !’+27.383!4+9.0916 !’]
. (43)

The numerator roots are

$%’ = o, – 1.19304, and –0.59648 t i.439366

while those of the denominator are

p,’ = 0.085576, – 1.278576, and –0.597 & i..549378.
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--i

——p=,

--i

—— p,,

● 0 e 0

I

T -t
●

--1
0 ●

--i
0——p=–,——p=–,

Fig. 5. Two basic patterns of L – 1 for four
section Chebyshev coupler.

The root patterns of L – 1 are shown in Fig. 5 and we

observe the two basic patterns anticipated in Section V

(see Part I). The basic pattern on the left produces the

matrix

[

16.206!4 + 14.833!’
Td = —_

PM + p’(4.153p’ +

r-

+ 1 p<l + !’(17.946!2 + 8.41)

2.38) 1 (44)
4.599!4 + 5.18P2 + 1

corresponding to an impedance array

3.903, 2.03, 1.412, and 1.107 (45)

while the pattern on the right produces the matrix

1

I 11.827P4 + 12.4075P2 + 1
T4’ =

1

P<l + P’(15.0388P’ + 8.410) I
p<l + !2(7.0598!’ + 2.3796) 8.9782!4 + 7.6055!2 + 1 J

(46)

These two conditions provide
which leads to the array

K = 2.046
1.6752, 4.1424, 1.3242, 1.2716. (47)

and z The authors apologize for their archaic use of slide rule and desk

Tl(a) = 8a4 – 8a2 + 1 = 3.37188.
computer and advise the reader to take the numerical results with a
small, but finite, grain of salt.
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It is of interest to compare the differential phase be-

tween the coupled and transmission ports for both

realizations. From (5) and (33) we findl that

k(p)
A@z = arg — = arg (M,,(p) + <1 + p’ ll’,t–I(p))

t(p)

and that further reference to (11) and (12) permits re-

expression of (48) as

Acj = arg [(.4 – D) + (B -- c)] (49)

where A and D, as employed earlier, are the respective

upper and lower major diagonal terms of the matrix

and B and C are the corresponding minor diagonal

terms. From (44) we find

[

(6.03 – 13.793 sin’0) cot 0
A@ = arctan –

9.653 – 11.607 sin’ O 1. (50)

The poles of the arctangent function occur for O = 0°

and 69° while the roots occur at 9 =41.4° and 90°, with

a symmetry of poles and roots about O= 90°. There is

also an odd symmetry of A@ about that value occurring

for 0=90°.

Because of the alternation of poles and zeros of the

arctangent it is an ever increasing function as shown

in Fig. 6. Since (44) represents a quarter-wave trans-

former-like embodiment of the coupler, one roughly

expects its approximation as a line length and terminat-

ing ideal transformer to lead to a uniformly increasing

phase shift as a function of section length 0, with a slope

at band center corresponding to the order of the ag-

gregate coupler length. Indeed, (5o) shows a slope cor-

responding to a line length

13.793 – 6.03
8 = 3.9:70,

11.607 – 9.6.53

which is an excellent approximation to 40.

Equation (44) provides a monotonic impedance se-

quence and provides intuitively pleasing results. Equa-

tion (46), on the other hand, leads to a nonmonotonic

sequence and a consequent failure of intuition. The dif-

ferential phase between coupled and transmission ports

is

[

(6.0304 – 7.979 sin’0) cot 0
Ap = arctan – 1. (51)

4.802 – 2.8488 sinz 0

We find but one pole of the arctangent function at

@= 0° and zeros at 19= 60.4° and 90°. Since there is a

failure of alternation of poles and zeros, the slope of the

differential phase function changes sign. The differential

phase shift is shown in Fig. 7 with this observed prop-

erty.

As a final point in this example of design we wish to

show the invariance of t(p) numericall~: for the two basic

I T
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Fig. 6. Phase difference between ports 2 and 3 for four section
coupler synthesized as a monotonic impedance array.
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Fig. 7. Phase difference between ports 2 and 3 for four section
coupler synthesized as a monotonic impedance array.

root patterns. Equation (33), in view of (11) and (12),

meets the well-known relationship

2
t(p) = —

A+ B+ C+D”
(52)

Since the major and minor diagonal terms differ by an

imaginary, the invariance of f(~) implies that

.4 + D = Invariant

B + C = Invariant. (53)

Inspection of (44) and (46) reveal the correctness of

(53).
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VIII. SYMMETRIC STRUCTURES

A symmetric structure necessarily contains an odd

number of sections and it is characterized by a major

diagonal equality in (12). We arrive, therefore, at the

necessary and sufficient condition for symmetry that

.]’. -,(p) = o. (54)

Equation (8) yields the loss formulation

L(*) – 1 = – M.’(p). (55)

It is instructive to show the form of (55) as following

directly from (54). For N.-I(P) to vanish identically is

to assert that there are no <1 +42 multiplier terms

in the numerator of k(P) formed from the product

~, (P- v’l+P’cw). This can only come about when for

every a, there exists a —a, in the product. Hence, for

every root of k(P) its negative is contained as well so

that k(p) and k( –P) have identical roots. Since all of

the roots of L – 1are contained in the roots of k(p)k( –P),

the roots of L(p) – 1 are double and (55) follows.

The sufficient condition to realize a symmetric struc-

ture, from the above arguments, is that which provides

k(P) and k ( –P) with identical roots. It is evident that

this occurs when the numerator of k(P) is ~~(j) cor-

responding to a numerator of k( —P) of —.M. (P). This

situation is shown graphically as well in Fig. 8(a). When

the root equality of k(p) and k( –P) is modified, as in

Fig. 8(b), an asymmetric structure results. Recapitulat-

ing the necessary and sufficient conditions for symmetric

structures, we have for n odd only and Mn(fl) an odd

polynomial

1) L= l–Mn2(fl)

2) The roots of k(P) and k(–)) are identical.

0 -ROOTS OFk[d

0- ROOTSOFk[-Pl

—— ~=,

: :+

—— —_p. j

m a co

w cm w co
—— —— P=–, —— ——p..,

SYMMETRIC s7RucwRE ASYMMETRIC STRUCTURE

(a) (b)

Fig. 8. Basic root pattern of L(p) – 1 leading to a) symmetric,
b) asymmetric realizations for loss function L = 1 – lln’(P).

Given an odd polynomial of nth degree, M.(P), we

have at our disposal (n+ 1)/2 constants that we may

specify in Mn2(@). A more general polynomial of 2nth

degree permits a specification of n constants so that the

imposition of the constraint of symmetry reduces the

degree of ‘specification of band behavior to roughly half

for n adequately large. This result corresponds to the

assertion in Section VI of the lower flatness “efficiency)’

of symmetric couplers in contrast to the optimally

designed asymmetric structures.

We shall now show two means of synthesizing a sym-

metric coupler through the use of an example of the

design of a three section coupler. The first method is

admittedly approximate, but it has the virtue of produc-

ing a fairly acceptable result with a reasonable amount

of calculation. The second method is exact and exacts

more effort as well. As an extended example, an approxi-

mate five section coupler design analysis is also in-

cluded.

A. Approximate Design of Three

Section Symmet~ic Colfpler

A three section symmetric structure has two free

constants and we choose a second order Chebyshev

polynomial as the approximation function since it too

has two constants. We then strive to satisfy the loss

function

L= K-(K-,)% (56)

where we recall the definition of v as v = cos 6 = VI +P~.

The loss function must simultaneously meet (55) and

(56) so that we have

T22(av)
K–(K–l)— ~

Tz’(a)
1 – M,’(i{rJ). (57)

Let Ms(x) = CM+ CSX3, then

(K-141-%1
~ (1 – V’)(C, – C,(I – u’))’. (58)

Equation (58) cannot be a true equality since the

left side is a fourth degree in v while the right side is

of sixth degree. We choose the approximation such that

as many lower degree terms as possible are equated. The

loss function then differs from that specified by a high

degree in cos O which is very small in the region about

band center. This procedure yields

3(3az — 2) ~ — 1 In
c1 =

2a2 – 1 () ~2_l
(59a)

a’ ()
K–n/2

C5=—— —
2a2–1a2–1 “

(59b)

Let us consider a 3-dB coupler having a O.1-dB ripple.

We obtain

K = 2.046, a = 1.4785,

Cl = 1.8769, and Cz = 0.90010
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Fig. 9. Approximate three section symmetric coupler design.
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Fig. 10. Root patterns of three section coupler.

\vhich lead to a loss function

L = 1 – P2(0.90010P2 + 1.8769)2. (60)

Figure 9 shows the results of (60) to aclhere respectably

to the desired result, possessing a ripple of – 0.1 dB and

+0.2 dB about 3 dB with a range of O from 41° to 139°.

The roots of L – 1 form into the two patterns of Fig. 10

so that there exists a second, asymmetric, realization.

The symmetric structure has the root pattern of Fig.

10(a) and possesses the matrix representation

which provides the symmetric impedance array

3.28, 1.421, 1.028. Qf,?t)

It is of interest to compare the differential phase be-

tween coupled and transmission ports for the two struc-

tures. Since the symmetric structure is characterized by

the equality of the major diagonal terms in (61),

(49) shows the differential phase to be equa[ to the argu-

ment of the difference of minor diagonal terms which

leads to the well-known quadrature phase character-

istics of the symmetric coupler. In particular, for the

symmetric coupler,

A~ = arg i(3.75380 – 1.80020 sin~ 0). (65)

Since there are no real roots of O in (65), there is a crm-

stant lead by 90° of the coupled port with respect to

the transmission port.

For the asymmetric structure of (63), (49) provides

the differential phase

2.105 sin’ 0 – 1.383
Ad = arctan (56)

sin 20

The argument of the arctangent function has poles at

0° and 90° and a zero at .54°. Since the poles and zeros

alternate, the arctangent function always has a positive

slope. Here again, in correspondence with the results of

the last section in relation to four section synthesis, the

monotonic, or quarter-wave transformer like, realization

of the loss function leads to a uniformly increasing dif-

ferential phase with respect to 6. The differential phase

of the nonmonotonic impedance array does not corre-

spond in any sense to an approximate line length. In

~, = /1 + &(5.17925@+ 1)

[

6.15681p3 + 5.73464P

1 (61)
4.35661j8 + 1.98084p <1 + p’(5.17925p’ + 1)

which provides the asymmetric impedance array

1.19, 3.35, 1.19. (62)

The asymmetric realization of the loss function of

(60) is obtained through the root pattern of Fig. 10(b).

The numerator of k(~) is now found to be

—.
0.9768j[j + 1.38618/1 + p’]’

so that the radical term <~ is introduced, confirm-

ing the asymmetric nature of the new structure. The

new matrix representation is found to be

particular the differential phase of the symmetric struc-

ture is absolutely flat.

The approximation method of design is extren~ ely

simple numerically and relaxation procedures readily

converge on an exact solution. The constants Cl and G

were obtained in a triangular fashion where the lowest

order comparison with the approximate polynomial de-

fined C,, while the next order involved CII and C’. Had

there been still more constants in a synthesis of greater

complexity, a progressively increasing involvement of

constants would have occurred so that at each step only

one constant is to be determined.

T3’ =

[

{1 + j2(7.88729p’ + 1) 8.11041}3 + 5.73464}

1 (63)
2,,40301@ + 1.98084p <1 + p’(2.47121p’ + 1)
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B. Exact Design of Three Section Symmetric Coupler

The exact design of the three section coupler is much

more tedious arithmetically than is a relaxation method

applied to the approximate design. It is included, how-

ever, for completeness.

Let Ms(p) = A @3 +A @. Its stationary points as a

function of 6 are given for

Al ‘/2

()

p=;, ~—
3A3 “

The assumption of the existence of an oscillatory loss

function implies that 1> (A1/3AJ Z 0. The IOSS at @ = i

is given as

L(i) = 1 + (Al – As)’ (67)

‘(’(37 =1+X3 “8)
We should like to have the loss contained between the

stationary points at (67) and (68). We must be careful,

however, that M3(P) has no root between these two

points since this would introduce an undesired mini-

mum in L at a value of unity with a violent excursion of

L between the values 1 and K.

There exists the possibility that (67) is a minimum

and (68) a maximum, and vice versa. We find, however,

that a maximum at (67) brings with it a root in ~~~(j)

for a real value of 8, excluding that solution. There

proves to be but one acceptable solution to the 3.01-dB

f O.1-dB loss specification given

A, = 1.793.59; .4,

so that the loss function is

L = 1 – (0.81539P3 +

The symmetric matrix to (69) is

by

= 0.81539

1.79359p)2. (69)

Corresponding to the impedance array

3.19958, 1.37828, 1.02398. (73)

Again, the correspondence between (63) and (64) with

(72) and (73) shows the approximation to be quite

reasonable.

Figure 11 is a plot of the exact loss function and

shows a band ranging from O=45° to 6’= 135°, for a

frequency ratio of 3:1.

35

3,0 —

~

N
— —.
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Fig. 11. Exact three section symmetric coupler design.

It is to be understood that this method is unlimited

with respect to the polynomial degree of L and that the

choice of n = 3 was taken only to provide an instructive

example of the “exact’) method.

~, = <1 + p’(5.14286P’ + 1)

[

6.02250$3 + 5.60182p

4.39172p’ + 2,01464p 1<1+ p’(5.14286p’ + 1) “
(70)

with the corresponding impedance array C. Approximate Design of Five Section

1.17104, 3.25979, 1.17104. (71) Symmetric Coupler

Comparison of (61) and (62) with (70) and (71) shows
As an additional demonstration of the approximation

the reasonableness of the zeroth order approximation
method we seek to design a five section symmetric

employed.
coupler. An approximation method which has been suc-

The asymmetric realization has the matrix represen-
cessful associates the stationary values of the loss func-

tation
tion with the available degrees of freedom and an ap-

~,, = ~1 + p’(7.79199p’ + 1)

[

7.97890p’ + 5.60182p

1<1 + p’(2.49372p’ + 1) “
(72)

2.43533p’ + 2.01465p
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proximation function is sought with the appropriate

number of stationary points. Since there are three un-

determined coupler impedances and since the insertion

loss function has mirror image symmetry about center

band, there are five stationar~- points, implying a fourth

order Chebyshev polynomial. In general, a Chebyshev

polynomial of order 2n might be employed to approxi-

mate the response of a 2n + 1 section symmetric coupler.

The choice of the Chebyshev approximation and the

matching of stationary values is but an election of the

authors. There appears nothing optimal about this

choice and other approximations with other fits and

other polynomials are certainly valid.

The loss of a symmetric five section coupler is

L = 1 + M,’(zL)

\vhere, now, u = sin 6. We define ilf5(a) as

M5(ZL) = C5US– c@ + (;121

and seek the best fit to a loss function of the form

‘& ’+(K-’’[’-%:]
where V, as before, is cos 0. If the coupler is assumed

to have a 0.1 dB variation about 3.o1 dB the lowest

degree terms are determined by a matching procedure

and n-e obtain

Cl = 3.0164

C, = 4.5426

CS == 2.5491.

These values are the first rough approximation and, it

should be pointed out, Cs was obtained by matching the

insertion loss at u = 1.

The rough values above had to be refined and a re-

laxation method was employed up to a second per-

turbation. Final values obtained were

Fig. 12. Approximate five-section symmetric coupler design

CI = 2.65779

C3 = 3.24183

C, = 1.60700

with stationary values at

I u\ = 0.890829, 0.645615,

The loss function is shown in Fig. 12 and displays good

correlation to design specification.

I~X, REMARKS ON TRANSMISSION LINE STRUCTtTRE:i

A. Equivalence of Filters and Quarter-

Wane Transformers

Filters and quarter-wave transformers have major

similarities and it is the purpose of this section, employ-

ing the statement of realizability, to show a simple

correlation.

An even 10SS function .L(P) is realizable if L(p) ZZ 1

over the range — 1< — i~ < +1. A transformation of ~z

to – (1 +&z) neither modifies the evenness of L(j) nor

does it change the comain over which the inequality

holds. Therefore, this transformation leads to an equally

realizable structure. Let us designate L(p) as the original

loss function and L’(p) as the loss function correspond-

ing to the transformed variable. Then, L(p) and L’(p)

are equal corresponding to a mathematically constant

90° difference of section length 6. In particular, if

L = 1 +Rn2(sin 0), then L’= 1 +Rnz(cos 0) and we arrive

at the two types of loss functions given in (32a, b) which

correspond to filters and quarter-wave transformers,

respectively.

We characterize a filter as a pure transmission 1ine

array having no ideal terminating transformer, so that

L(0) = 1. Conversely, a quarter-wave transformer does

have a terminating ideal transformer, that which is ab-

sorbed into the load mismatch, but has a match for

0 = 90° so that L’(i) = 1. Let L(p) be a filter loss function

corresponding to an impedance array 21, 22, . . . , ,Zfi.

From Fig. 10 in [2] we find that the identical transm-

ission and reflecting characteristics are obtained from

an array

terminated by the transformer

212325. . .
:1,

ZZZ4Z6 . . .

where each section length O is reduced to 6 – 90°, and

where there is a 90° terminating section for n odd. Since

the tangent of the roots and poles 19j of the reflect ion

function of the filter correspond identically t.o their co-
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J---l_ J--i_?-

[n=2)

Fig. 13. Quarter-wave transformer and filter equivalents.

tangent in the new variable 6 – 90° for the identical re-

flection function in O of the quarter-wave transformer,

the quarter-wave transformer developed as indicated

above from the filter prototype is exactly that which

would be synthesized from the transformation pz~

–(l+p’).

Figure 13 shows examples of a quarter-wave trans-

former derived from a filter prototype for the cases of

n = 1 and 2. The results in Fig. 13 are quite well known.

If in the case of n = 1 we set Z2 = R then we find for the

one section transformer that an impedance R is matched

by a quarter-wave section of impedance R+. Similarly

in a two section case, a maximally flat match into an

impedance R is obtained by the cascade of sections

having characteristic impedances, respectively, of R*

and R$.

B. Application of A symmetric Couplers to Mixers

Because of the lack of a simple phase relationship

between t(p) and k(P) in an asymmetric coupler, one

might question the utility of an asymmetric coupler in

its application to a mixer where one hopes for a simple

phase relationship between the intermediate frequency

outputs at ports 2 and 3, respectively, in Fig. 14. We

shall now show that there is a 180° intermediate phase

difference between ports 2 and 3 when the IF frequency

is relatively small.

.

[1]d (3)
slmJ.L

LO
[2) (4)

Fig. 14. Coupler used as mixer.

If the signal is applied to port 1 in Fig. 14 and the

local oscillator to port 4, then if ~z is the IF phase at

port 2 and q58the IF phase at port 3, we have

S12

+2 = arg ~ (i’4a)

S13
~~=arg~. (74b)

We have assumed in (74) that the scattering coefficients

are insensitive to the small IF frequency difference

separating the signal and local oscillator. Identifying the

scattering terms, we have S12 = k (P), Sls = S1’Z= t(p). It

remains to identify .S43 in terms of k(P) and t(p).

The quantity S4S is the even mode reflection coefficient

of the reversed network. The even mode has the follow-

ing two port scattering characterization,

(75)

The unitary property of the reactive scattering matrix

provides

t(p)
— k“(p) .S+3= – ~*(p) (76)

Equations (74) and (76) combine to give

5’12s43 kk*
Ar$=~3-q5z=arg-=

()
arg — — = 180°,

S42S13 tt*

X. COMMENTS

Insertion loss synthesis through a cascade of equal

length transmission lines goes back several years. From

a purely human motivation it is the admittedly belated

desire of one of the authors to set the record straight

with respect to two of the earlier publications [1], [2].

H. J. Riblet [1] in his Discussion section makes two

points about the doctoral dissertation of H. Seidel

(Polytechnic Institute of Brooklyn, N. Y., May 1954):

1) “He (Seidel) does not introduce a complex variable equal to
@ (equal to –i cot o in Riblet’s notation) and thus does not
have Richards’ [7] theorem available for proving physical

realizability. ”

2) ’’... he makes no point of the second condition for the physical
realizability of an impedance function. ”

Working backwards in the order of objections, Riblet’s

“second condition” is that stated in (28) of the pres-

ent paper, and it is seen to derive directly from the

unity determinant condition of the transfer operator

given in (13). The doctoral dissertation of 1954 is repro-

duced in essence in [2], and the unity determinant con-

dition is given in (19) of that paper. The unity deter-

minant condition followed as a consequence of the mode

of realization which required only an assertion that the

insertion loss function be of the form L = 1 +R.z(cos 19).

The very fact that the synthesis achieved was composed

of reciprocal elements required this consequence.

As we have shown in the present paper, a more general

condition of realizability is only the requirement that

the loss function be even in cos 6’ and always greater than
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or equal to unity. There is no requirement whatsoever

on the sufficiency of this statement that there be a unity

determinant, although a network reciprocity statement

tantamount to a unit determinant is required to show

the necessity and completeness of the synthesis. Riblet,

in insisting that a special point must be made of his

second condition, is in error for a statement of realiza-

bility based on insertion loss.

In response to the first objection cited, the choice of a

PRF theoretic method of proof of realizability over a

root locus approach is strictly fielder’s choice. If any

justification need be given for a choice of p of the form

of sin 19as opposed to cot 0, it is given in Section IV of

Part I of this paper. Nevertheless, roots of cot 19were in-

volved in [2] [(13b) of that paper] and a simple, ade-

quate, root locus proof of realizability was given in-

volving only the nature of the loss functi on. s

Instead of the two statements required by Riblet

using a PRF mode of description to prodluce realizability

only a single statement is required using an insertion loss

description. This lack of economy of statement is re-

flected in a more recent paper by Levy which motivates

him to state an incorrect theorem. It reads:

.4ny insertion loss function of the form

L= 1+ ~,(acos O+ bsin @]’+ ~,(ucose+bsint l)]’

can be rea[ized as a stepped impedance filter with real positive char-
acteristic impedances if the function L = 1 +fl~(,~) +~zz(ti) haviag all
its poles at infinity, is realizable as a two-port lac~der network consist-

ing of simple Iossless series reactauces and shu ut susceptances ter-

minated by resistances.d

That this theorem is incorrect maybe observed simply

by placing jl(u) =jz(co) = co so that L== 1 +20JZ. This is

realizable by a relative series reactance or shunt sus-—
ceptance of value 2<2 inserted between terminations.

By Levy’s theorem, L = 1 +2(a cos 0+61 sin 0) 2 is equally

realizable for all values of a and b k terms of a stepped

impedance filter. Since the insertion loss of a reactive

two-port is unaffected by time reversal it is even in 0.

This last loss function cannot be even unless either a or

b is zero.

This theorem is unnecessary if we recognize that a

necessary condition of realizability is that ~lz(ti) +jz.z(co)

be even in u together with the condition that a or b

vanish. It is sufficient to meet the PRF conditions since

L is even in 0 and greater than unity and it automati-

cally meets Riblet’s “second condition” since the proto-

type ladder structure has a transfer matrix determinant

of unity. Little of substance is added to Riblet’s two

criteria for realizability. In the development of his

couplers Levy chose the loss function

L = 1 + /32 – /Z2Tn9(U)

3 Seidel, H., Synthesis of a class of microwave filters, IRE Trans.
on Mic?owaw Tkeory and Techniques, >-01 hlTT-5, Apr 1957, p 112.

4 Levy, R., General synthesis of asymmetric multi-element
coupled-transmission-line directional coupler, IEEE Tram. on Micro-
wave Theory and Techniques, vol MTT-11, Jul 1963, p 235.
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where the transformation W+ (COS 6/cos f30) fortunately

produced no fundamental violations.

The use of a PRF description requires yet another re-

striction over the two of Riblet in that Young [8] adds

a third to the effect that numerator and denominator

polynomials of the impedance function be of the san Le

degree. The completeness of realizability of an appro-

priate loss function guarantees this is so. The specif~c

demonstration of this condition follows from (18) which

shows that the first impedance of the stepped array is

defined by a ratio of the leading coefficients of numera-

tor and denominator, respectively, in the impedance

function. A difference of degree would cause one of these

coefficients to vanish, producing either a zero or an in-

finite characteristic impedance section. Since this neces-

sarily implies infinite insertion loss, contrary tc) hypothe-

sis, the polynomials are of equal degree.

It is not without reason that a positive real function

theory approach requires a greater multiplicity of re-

strictions for realizability than does the insertion loss

statement using a root locus procedure. PRF theory is

very general and covers many classes of structures of

which the cascaded transmission line structure is but

one. It is, therefore, necessary to impose these added

restrictions to diminish the initial excessive generality.

The insertion loss function, on the other hand, contains

within its very formulation the restrictions associated

with this class of structures and, as we have shown, is

adequate for realizability to within the two obvious

physical restrictions that it 1) be passive (L ~Z 1), 2) be

time reversible (L (i sin 6) = L ( – i sin 0)).
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