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Multiplicity in Cascade Transmission
Line Synthesis—Part II

H. SEIDEL, MEMBER, IEEE, AND J. ROSEN, MEMBER, IEEE

Abstract—The first portion of this paper! related to an exami-
nation of the synthesis of cascade transmission line structures pro-
viding a polynomial insertion loss function phrased in terms of the
cosine of an electrical length. Certain features of nonuniqueness of
the synthesis were uncovered which, particularly in the case of
couplers, lead to a flexibility in design. This portion of the paper
includes a specific examination of couplers and concludes with some
general comments on transmission line synthesis.

VI. TransmissioN LiNne COUPLERS
ﬁ TRANSMISSION line coupler is composed of two

multisection conductors having reflection sym-

metry to one another about a longitudinal axis.
The two conductor system possesses syvmmetric and
antisymmetric modes with the symmetric characteristic
impedance for each section always being the higher one
for the two modes. If the structure is designed so that
the symmetric and antisymmetric networks are mutu-
ally dual, namely that every characteristic impedance
of the symmetric network corresponds to its inverse in
the antisymmetric network, then a hybrid structure
results. The hybrid action results from the opposed, but
equal magnitude, reflections from the two networks and
from their equal transfer functions. Signal fed into one
port admixes into the two modes and the reflections
interfere destructively back to the signal port and con-
structively to an adjacent port. There is no relative
change in the modal admixture of the transmitted wave
since both modal transfer functions are identical, so
that transmitted output occurs on the same conductor
as that of the input signal. There is no output at the
fourth port because of symmetry-antisymmetry mode
interference.

It suffices to consider just one of the two modes. We
shall consider only the symmetry mode, where its re-
flection factor is equal to the scattering coefficient to
the coupled port and the transfer function is the scatter-
g coefficient to the transmission port. This result is
shown in Fig. 3 (see Part I) for a unit input wave ampli-
tude.

Often, the criterion of merit of a coupler is the flatness
of coupling as a function of frequency which finds alter-
native phrasing in terms of the flatness of the joint loss
function of the symmetric and antisymmetric networks.
It is not infrequent, however, that phase requires con-
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sideration, as in quadrature hybrids, and this too enters
into the synthesis formulation.

Let us consider now only the specification on coupling
magnitude. We desire a reactive network possessing sub-
stantially constant reflection over a large frequency
range. The network element we seek, ideally, is the
ideal transformer which we may realize with good ap-
proximation to within an additive transmission line
length over a broadband as a multisection quarter-wave
transformer.

The imperfect approximation of the finite quarter-
wave transformer to an ideal transformer may be repre-
sented in the fashion shown in Fig. 4. Here the quarter-
wave transformer is represented as a line length plus
the transformer 1/N plus still an added fourpole repre-
senting the fluctuation of the representation. The four-
pole has an identity representation plus small perturba-
tion terms and is characterized as follows

14+« 8
r=(7 )
iy 146
where «, 8, v, and § are all small quantities. If the quar-
ter-wave transformer is terminated by an N:1 trans-

former, the network is essentially matched and, ne-
glecting the additive line length, we obtain

(35)
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Fig. 4. Quarter-wave transformer equivalent.
If the quarter-wave transformer is terminated by a
unit load the reflection is essentially equal to
Nt—1
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so that

s <N2—1>91 .
NE [ v

N2 2
1 (B —v)t|. (39
(o] o

Examination of (37) and (39) shows that the quarter-
wave transformer operating into the appropriate mis-
match to provide an overall network match produces
power reflection fluctuations about the matched condi-
tion which is of second degree in all the variables «, 3,
v, and 8. The quarter-wave transformer operating as a
constant mismatch, however, produces first-order fluc-
tuation terms in « and §, which severely limits useful-
ness.

While a quarter-wave transformer tends to be the
design we seek for coupler instrumentation, neverthe-
less, there must be a significant modification to mini-
mize the value of (@¢—06) compared to (3—v). Even if
we do not obtain the quarter-wave transformer pre-
cisely in design we, nonetheless, expect to observe the
characteristic monotonic sequence of impedances asso-
ciated with the quarter-wave transformer. One is,
therefore, led to the observation at this point that a
symmetric coupler is less efficient in producing flat
coupling than is the asymmetric variant of the quarter-
wave transformer.

A pure transmission line cascade is always matched
for p=0 and L —1, therefore, has at least a double root
at the origin. Since the cascade, by intent, has the wid-
est possible mismatch in frequency, good coupler design
dictates that there be no other roots of L—1 on the
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solutions by the following argument. A transformer
transforms a matched load into one having an essen-
tially fixed value of reflection. An equally good solution
for the coupler, however, is that transformation which
takes a matched load into one having a substantially
circular reflection locus in the reflection plane about the
origin as a center. The degree of multiplicity of the
variant syntheses relates to the possible number of
admissible loci.

We may now show that multiple basic patterns occur
only for #>3. In discussing basic patterns we shall
recall that imaginary roots of L —1 are simple for
fpl >1 and that simple root locus transformations may
be employed to carry them through the point at infinity
to the real axis. In our considerations, therefore, we
shall make little distinction between real roots and those
imaginary roots for | p| >1.

If n=1 then L —1is of second degree and the require-
ment of double roots at the origin requires that

L—1~p2

If n=2, two roots are again consigned to the origin and
the two remaining roots, not enough for a quartet, fall
on the real axis. For both =1 and 2, £(p) is defined to
within inversion symmetry of its roots so that there is
but one basic pattern in each case.

If n=3, L—11is of sixth degree and two types of root
formations exist. 1) The roots, less the two at the origin,
form a complex quartet still yielding but one basic
root pattern. 2) The remaining four roots split up on
the real axis; two unequal positive roots and their cor-
responding negatives. This last case vields two basic
patterns as we may now observe. Let p=0, a, b be the
three independent roots of L —1. We may then have the
tollowing

. a . b
(o= v So) (- VIF P i)
k(p) = D) (40a)
o a . b
P<P —Vi+p m)(?*l‘\/l + 7 iy b2>
k(p) = &) (40b)

imaginary axis for Ip[ < 1. In virtue of the results of the
last section, the premises of coupler design yield the
greatest number of basic root patterns and produce, in
contrast to optimum quarter-wave transformers and
transmission line flters, the greatest multiplicity of
syntheses.

Multiple syntheses, as we shall show by example, do
not as a rule maintain the monotonic impedance se-
quence ascribed to the quarter-wave transformer and
thus are not as qualitatively evident from physical
considerations in their application to couplers. One may
gain some insight into the mechanism of these other

The root pattern chosen to form k(p) in (40a) is 0, a, b,
whereas the root pattern in (40b) is 0, a, —b.

Forn=4, L —1is of eighth degree and the root forma-
tion is for one case a pair at the origin, a quartet of
complex roots, and a pair on the real axis. A more com-
plex case might put more roots on the real axis and elim-
inate the complex quartet. In any event, n>3 always
leads to multiplicity with a possible nonuniqueness
occurring for n=3.

As a final comment on coupler design, there is at
present no assurance that variant syntheses all lead to
admissible coupler designs. Since the symmetric mode
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impedances are always greater than the corresponding
impedances of the antisymmetric mode, a contradiction
would occur if synthesis required a symmetric imped-
ance less than unity since the dual would require an
antisymmetric impedance greater than unity. An acces-
sory requirement on coupler synthesis, therefore, is that
all impedances of a symmetric mode array be greater
than unity.

VII. ExampLE oF COUPLER DESIGN

The identification of couplers with quarter-wave
transformers motivates a choice of variables v=cos 0
which is more sensitive to a 90° structure than is sin 6.
Let it be required to synthesize the loss function such
that it is equal to a constant plus some even polynomial
fan(v). Since L —1=0 when v=1 the loss function takes
the form

on('U)
f‘ln(l)

where f2,(2) <fen(1) for 0<v<1. For a Chebyshev de-
parture fo,(v) = T*(av), where a>1, so that

T2 (av) ‘
T.*(a)

L=K-—(K—1) (41)

L) = K — (K — 1) (42)

Let it be required to construct a four section Cheby-
shev coupler having a coupling of 3.01 £0.1 dB. We ob-
serve from (42) that

L = K—3.11 dB
(K—-1)
T.%(a)

Lo = K — — 2.91 dB.

[ 16.206p* + 14.833p* + 1
o [p\/TIF(4.153p2 + 2.38)

o [ 11.827p* 4+ 12.4075p2 + 1
U= v p2(7.0598p° + 2.3796)

These two conditions provide
K = 2.046
and

Ti(a) = 8a* — 8a2 + 1 = 3.37188.
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We obtain? @ =1.1132. Since av= +1 are the band edges
of (42), we obtain these edges by the relationship
cos 0= +1/a. The coupler has a band ranging from
0=26.06° to 6=153.94°; a spread of 5.9:1,
Since p*=9*—1, we find from (42)
| k(o) |2
L—1
I’
— $2[13.885p5+33.120p4+27.383 p24+9.0916]
11— [13.885p%+33.120p5+27.383p*+9.09162]

(43)

The numerator roots are

p.2 =0, —1.19304, and —0.59648 + 7.439366

while those of the denominator are

p2 = 0.085576, —1.278576, and —0.597 + 4.540378.

@ —ROOTS OF k{p)
© - ROOTS OF k{—p}
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Fig. 5. Two basic patterns of L—1 for four

section Chebyshev coupler.

The root patterns of L —1 are shown in Fig. 5 and we
observe the two basic patterns anticipated in Section V
(see Part I). The basic pattern on the left produces the
matrix

pv1 + p2(17.946p° + 8.-}1):| (44)
4.599p% + 5.18p% + 1
corresponding to an impedance array
3.903, 2.03, 1.412, and 1.107 (45)
while the pattern on the right produces the matrix
/1 + $2(15.0388p% + 8.410)—| (46)
8.9782p* + 7.6055p + 1
which leads to the array
1.6752, 4.1424, 1.3242, 1.2716. 47

* The authors apologize for their archaic use of slide rule and desk
computer and advise the reader to take the numerical results with a
small, but finite, grain of salt.
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It is of interest to compare the differential phase be-
tween the coupled and transmission ports for both
realizations. From (5) and (33) we find that

k(p) T
A¢ = arg =arg (M.(p) + V1 + p2 Nua(p))

t(p)

and that further reference to (11) and (12) permits re-
expression of (48) as

Ad = arg [(4 — D) + (B — O)] (49)
where 4 and D, as employed earlier, are the respective
upper and lower major diagonal terms of the matrix
and B and C are the corresponding minor diagonal
terms. From (44) we find

(6.03 — 13.793 sin?6) cot §
. (50)

A¢ = arctan |:—- -
9.653 — 11.607 sin® ¢

The poles of the arctangent function occur for 6=0°

and 69° while the roots occur at §=41.4° and 90°, with

a symmetry of poles and roots about §=90°. There is

also an odd symmetry of A¢ about that value occurring

for §=90°.

Because of the alternation of poles and zeros of the
arctangent it is an ever increasing function as shown
in Fig. 6. Since (44) represents a quarter-wave trans-
former-like embodiment of the coupler, one roughly
expects its approximation as a line length and terminat-
ing ideal transformer to lead to a uniformly increasing
phase shift as a function of section length 8, with a slope
at band center corresponding to the order of the ag-
gregate coupler length. Indeed, (50) shows a slope cor-
responding to a line length

13.793 — 6.03

———f§ = 3.979,
11.607 — 9.653
which is an excellent approximation to 40.

Equation (44) provides a monotonic impedance se-
quence and provides intuitively pleasing results. Equa-
tion (46), on the other hand, leads to a nonmonotonic
sequence and a consequent failure of intuition. The dif-
ferential phase between coupled and transmission ports
is

(6.0304 — 7.979 sin? §) cot 0 )
. (5

Ap = arctan I:— :
4.802 — 2.8488 sin?

We find but one pole of the arctangent functionat
6=0° and zeros at #=60.4° and 90°. Since there is a
failure of alternation of poles and zeros, the slope of the
differential phase function changes sign. The differential
phase shift is shown in Fig. 7 with this observed prop-
erty.

As a final point in this example of design we wish to
show the invariance of {(p) numerically for the two basic
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Fig. 6. Phase difference between ports 2 and 3 for four section
coupler synthesized as a monotonic impedance array.
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Fig. 7. Phase difference between ports 2 and 3 for four section
coupler synthesized as a monotonic impedance array.

root patterns. Equation (33), in view of (11} and (12),
meets the well-known relationship

Hp)y = ——— . '52
» T BELCED (52)

Since the major and minor diagonal terms differ by an
imaginary, the invariance of #(p) implies that
4 -+ D = Invariant
B + C = Invariant. (53)

Inspection of (44) and (46) reveal the correctness of

(53).
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VIII. SYMMETRIC STRUCTURES

A symmetric structure necessarily contains an odd
number of sections and it is characterized by a major
diagonal equality in (12). We arrive, therefore, at the
necessary and sufficient condition for symmetry that

No._i(p) = 0. (54)
Equation (8) yields the loss formulation
L(p) — 1 = — M.*p). (55)

Tt is instructive to show the form of (55) as following
directly from (54). For N,_1(¢) to vanish identically is
to assert that there are no ~/14p? multiplier terms
in the numerator of k(p) formed from the product
IL (p — /14 p3a;). This can only come about when for
every «, there exists a —a, in the product. Hence, for
every root of k(p) its negative is contained as well so
that k(p) and k(—p) have identical roots. Since all of
the roots of L — 1 are contained in the roots of k(p)k(—p),
the roots of L(p)—1 are double and (55) follows.

The sufficient condition to realize a symmetric struc-
ture, from the above arguments, is that which provides
k(p) and k(—p) with identical roots. It is evident that
this occurs when the numerator of k(p) is M.(p) cor-
responding to a numerator of k(—p) of —M,(p). This
situation is shown graphically as well in Fig. 8(a). When
the root equality of k(p) and k(—p) is modified, as in
Fig. 8(b), an asymmetric structure results. Recapitulat-
ing the necessary and sufficient conditions for symmetric
structures, we have for n odd only and M,(p) an odd
polynomial

2) The roots of k(p) and k(—p) are identical.

® —ROOTS OF k(p}
© ~ROOTS OF ki—p)
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SYMMETRIC STRUCTURE

ASYMMETRIC STRUCTURE

(a) (b)

Fig. 8. Basic root pattern of L(p)—1 leading to a) symmetric,
b) asymmetric realizations for loss function Z =1— A% p).

Given an odd polynomial of nth degree, M.(p), we
have at our disposal (#n-1)/2 constants that we may
specify in M,2(p). A more general polynomial of 2nth
degree permits a specification of # constants so that the
imposition of the constraint of symmetry reduces the
degree of specification of band behavior to roughly half
for n adequately large. This result corresponds to the
assertion in Section VI of the lower flatness “efficiency”
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of symmetric couplers in contrast to the optimally
designed asymmetric structures.

We shall now show two means of synthesizing a sym-
metric coupler through the use of an example of the
design of a three section coupler. The first method is
admittedly approximate, but it has the virtue of produc-
ing a fairly acceptable result with a reasonable amount
of calculation. The second method is exact and exacts
more effort as well. As an extended example, an approxi-

mate five section coupler design analysis is also in-
cluded.

A. Approximate Design of Three
Section Symmetric Coupler

A three section symmetric structure has two Iree
constants and we choose a second order Chebyshev
polynomial as the approximation function since it too
has two constants. We then strive to satisfy the loss
function

T2 (azr)

L=K—(K-1) )

(56)

where we recall the definition of v as v =cos 8 = /14 p>.
The loss function must simultaneously meet (55) and
(56) so that we have

K- k-2 1 yeaviTe). (5
)ng(a)— — M2@v1—1?). (57)
Let M;(x) = Cix+ Cax?, then
ng(di))
=t E%a)]
~ (1= 99)(Cy ~ Co(l — )2 (58)

Equation (58) cannot be a true equality since the
left side is a fourth degree in v while the right side is
of sixth degree. We choose the approximation such that
as many lower degree terms as possible are equated. The
loss function then differs from that specified by a high
degree in cos 6 which is very small in the region about
band center. This procedure yields

3307 — 2) (K — 1\'/?
YT e~ 1 (a2 — 1> (598)
@ (K — 1\ )
Cs = oy _*1 (02 — 1> . (59b)

Let us consider a 3-dB coupler having a 0.1-dB ripple.
We obtain

K = 2,046, a = 1.4785,

Cy = 1.8769, and C; = 0.90010
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Fig. 9. Approximate three section symmetric coupler design.
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Fig. 10. Root patterns of three section coupler.

which lead to a loss function

L =1 — $2(0.90010p% + 1.8769)2. (60)

Figure 9 shows the results of (60) to adhere respectably
to the desired result, possessing a ripple of —0.1 dB and
+0.2 dB about 3 dB with a range of § from 41° to 139°.
The roots of L —1 form into the two patterns of Fig. 10
so that there exists a second, asymmetric, realization.

The symmetric structure has the root pattern of Fig.
10(a) and possesses the matrix representation

- [\/T?F(S.mzsp? +1)
4.35661p" + 1.98084p

which provides the asymmetric impedance array

1.19, 3.35, 1.19. (62)

The asymmetric realization of the loss function of
(60) is obtained through the root pattern of Fig. 10(b).
The numerator of k($) is now found to be

0.9768p[p + 1.38618+/1 + 2]

so that the radical term +/1+4p? is introduced, confirm-
ing the asymmetric nature of the new structure. The
new matrix representation is found to be

, [\/1 + p*(7.88729p% + 1)
2.40301p% + 1.98084p

Cascade
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which provides the symmetric impedance array
3.28, 1.421, 1.028. (64)

It is of interest to compare the differential phase be-
tween coupled and transmission ports for the two struc-
tures. Since the symmetric structure is characterized by
the equality of the major diagonal terms in (61),
(49) shows the differential phase to be equal to the argu-
ment of the difference of minor diagonal terms which
leads to the well-known quadrature phase character-
istics of the symmetric coupler. In particular, for the
symmetric coupler,

A¢ = arg (3.75380 — 1.80020 sin? §). (65)

Since there are no real roots of 8 in (65), there is a con-
stant lead by 90° of the coupled port with respect to
the transmission port.

For the asymmetric structure of (63), (49) provides
the differential phase

2.105sin2 9 — 1.383

sin 26

A¢ = arctan (66)

The argument of the arctangent function has poles at
0° and 90° and a zero at 54°. Since the poles and zeros
alternate, the arctangent function always has a positive
slope. Here again, in correspondence with the results of
the last section in relation to four section synthesis, the
monotonic, or quarter-wave transformer like, realization
of the loss function leads to a uniformly increasing dif-
ferential phase with respect to 6. The differential phase
of the nonmonotonic impedance array does not corre-
spond in any sense to an approximate line length. In

6.15681p% -+ 5.73464p }
VI F 5(5.17925p + 1)

particular the differential phase of the symmetric struc-
ture is absolutely flat.

The approximation method of design is extremely
simple numerically and relaxation procedures readily
converge on an exact solution. The constants C; and Cs
were obtained in a triangular fashion where the lowest
order comparison with the approximate polynomial de-
fined (i, while the next order involved C; and Cs. Had
there been still more constants in a synthesis of greater
complexity, a progressively increasing involvement of
constants would have occurred so that at each step only
one constant is to be determined.

8.11041 p% 4 5.73464p :I (63)

VI F p2(2.47121p> + 1)
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B. Exact Design of Three Section Symmetric Coupler

The exact design of the three section coupler is much
more tedious arithmetically than is a relaxation method
applied to the approximate design. It is included, how-
ever, for completeness.

Let AM3(p)=Asp*+A4:p. Its stationary points as a
function of 8 are given for

AN
= q, 7 .
p=s <3A3>

The assumption of the existence of an oscillatory loss
function implies that 1> (41/343) 20. The loss at p=1
is given as

L(i) =1+ (Al — A3)2

Ay M2 1A
(G ) =m0
34, 27\ 4;

We should like to have the loss contained between the
stationary points at (67) and (68). We must be careful,
however, that A7;(p) has no root between these two
points since this would introduce an undesired mini-
mum in L at a value of unity with a violent excursion of
L between the values 1 and K.

There exists the possibility that (67) is a minimum
and (68) a maximum, and vice versa. We find, however,
that a maximum at (67) brings with it a root in A;5(p)
for a real value of 8, excluding that solution. There
proves to be but one acceptable solution to the 3.01-dB
+0.1-dB loss specification given by

Ap = 1.79359; A, = 0.81539

(67)

(68)

so that the loss function is
L =1— (0.81539p° + 1.79359p)2 (69)

The symmetric matrix to (69) is

. [\/1 T+ %(5.14286p% + 1)
Pl 4.30172p% + 2.01464p

with the corresponding impedance array
1.17104, 3.25979, 1.17104. (71)

Comparison of (61) and (62) with (70) and (71) shows
the reasonableness of the zeroth order approximation
employed.

The asymmetric realization has the matrix represen-
tation

. [\/1 F p2(7.79199p + 1)
P L 2.43533p% + 2.01465p
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Corresponding to the impedance array

3.19958, 1.37828, 1.02398. (73)
Again, the correspondence between (63) and (64) with
(72) and (73) shows the approximation to be quite
reasonable.

Figure 11 is a plot of the exact loss function and
shows a band ranging from 6=45° to §=135° for a

frequency ratio of 3:1.

38
30
>
o \—
h=1
N
=
a /
25
2055 40 50 60 70 80 20
© DEGREES
Fig. 11. Exact three section symmetric coupler design.

It is to be understood that this method is unlimited
with respect to the polynomial degree of L and that the
choice of n =3 was taken only to provide an instructive
example of the “exact” method.

6.02250p* + 5.60182p :l

VT F $2(5.14286p% + 1) (70)

C. Approximate Design of Five Section
Symmetric Coupler

As an additional demonstration of the approximation
method we seek to design a five section symmetric
coupler. An approximation method which has been suc-
cessful associates the stationary values of the loss func-
tion with the available degrees of freedom and an ap-

7.97890p% 4 5.60182p :] 72)

V1 + p2(2.49372p% + 1)
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proximation function is sought with the appropriate
number of stationary points. Since there are three un-
determined coupler impedances and since the insertion
loss function has mirror image symmetry about center
band, there are five stationary points, implving a fourth
order Chebyshev polynomial. In general, a Chebyshev
polynomial of order 2z might be employed to approxi-
mate the response of a 2%--1 section symmetric coupler.

The choice of the Chebyshev approximation and the
matching of stationary values is but an election of the
authors. There appears nothing optimal about this
choice and other approximations with other fits and
other polynomials are certainly valid.

The loss of a symmetric five section coupler is

L=14 Mg(u)
where, now, #=sin 0. We define AM(u) as
My(u) = Cysut® — Cys® + Crut
and seek the best fit to a loss function of the form

2

L:1+(K—1)[1—~

where v, as before, is cos 6. 1f the coupler is assumed
to have a 0.1 dB wvariation about 3.01 dB the lowest
degree terms are determined by a matching procedure
and we obtain

Cy = 3.0164
C; = 4.5426
Cs = 2.5491.

These values are the first rough approximation and, it
should be pointed out, (5 was obtained by matching the
insertion loss at u=1.

The rough values above had to be refined and a re-
laxation method was employed up to a second per-
turbation. Final values obtained were

35
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Fig. 12. Approximate five-section symmetric coupler design.
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Cy = 2.65779
Cs; = 3.24183
Cs = 1.60700

with stationary values at

| u] = 0.890829,  0.645615.

The loss function is shown in Fig. 12 and displays good
correlation to design specification.

IX. REMARKS ON TRANSMISSION LINE STRUCTURES

A. Equivalence of Filters and Quarter-
Wave Transformers

Filters and quarter-wave transformers have major
similarities and it is the purpose of this section, employ-
ing the statement of realizability, to show a simple
correlation.

An even loss function L(p) is realizable il L(p):>1
over the range —1< —ip<+1. A transformation of p?
to —(1+p? neither modifies the evenness of L(p) nor
does it change the comain over which the inequality
holds. Therefore, this transformation leads to an equally
realizable structure. Let us designate L(p) as the original
loss function and L'(p) as the loss function corresporid-
ing to the transformed variable. Then, L(p) and L'(p)
are equal corresponding to a mathematically constant
90° difference of section length #. In particular, if
L=1+4R,*(sin §), then L' =1+R,*(cos 0) and we arrive
at the two types of loss functions given in (32a, b) which
correspond to filters and quarter-wave transformers,
respectively.

We characterize a filter as a pure transmission line
array having no ideal terminating transformer, so that
L(0) =1. Conversely, a quarter-wave transformer does
have a terminating ideal transformer, that which is ab-
sorbed into the load mismatch, but has a match for
6=90° so that L'(4) = 1. Let L(p) be a filter loss function
corresponding to an impedance array Zi, Zs, - * *, Zn.
From Fig. 10 in [2] we find that the identical trans-
mission and reflecting characteristics are obtained from
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where each section length 6 is reduced to 6 —90°, and
where there is a 90° terminating section for z odd. Since
the tangent of the roots and poles 8; of the reflection
function of the filter correspond identically to their co-
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Fig. 13. Quarter-wave transformer and filter equivalents.

tangent in the new variable § —90° for the identical re-
flection function in # of the quarter-wave transformer,
the quarter-wave transformer developed as indicated
above from the filter prototype is exactly that which
would be synthesized from the transformation p2—
—(14p7).

Figure 13 shows examples of a quarter-wave trans-
former derived from a filter prototype for the cases of
n=1 and 2. The results in Fig. 13 are quite well known.
If in the case of n=1 we set Z2=R then we find for the
one section transformer that an impedance R is matched
by a quarter-wave section of impedance R:. Similarly
in a two section case, a maximally flat match into an
impedance R is obtained by the cascade of sections
having characteristic impedances, respectively, of Rt
and RY,

B. Application of Asymmetric Couplers to Mixers

Because of the lack of a simple phase relationship
between t(p) and k(p) in an asymmetric coupler, one
might question the utility of an asymmetric coupler in
its application to a mixer where one hopes for a simple
phase relationship between the intermediate {requency
outputs at ports 2 and 3, respectively, in Fig. 14. We
shall now show that there is a 180° intermediate phase
difference between ports 2 and 3 when the IF frequency
is relatively small.
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Fig. 14. Coupler used as mixer.

If the signal is applied to port 1 in Fig. 14 and the
local oscillator to port 4, then if ¢, is the IF phase at
port 2 and ¢ the IF phase at port 3, we have

Sz
9 = arg ——
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We have assumed in (74) that the scattering coefficients
are insensitive to the small IF frequency difference
separating the signal and local oscillator. Identifying the
scattering terms, we have Su==F~k(p), Su=Se=1(p). It
remains to identify Sy in terms of £(p) and £(p).

The quantity Sg is the even mode reflection coefficient
of the reversed network. The even mode has the follow-
ing two port scattering characterization,

& -0 )

The unitary property of the reactive scattering matrix
provides

(75)
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Equations (74) and (76) combine to give

A = 5 — ¢ Suds (kk*> 180°
= ¢p3 — ¢ = ar =arg~|(— ] = .
? ’ 8 S4S13 8 it*

X. COMMENTS

Insertion loss synthesis through a cascade of equal
length transmission lines goes back several years. From
a purely human motivation it is the admittedly belated
desire of one of the authors to set the record straight
with respect to two of the earlier publications [1], [2].
H. J. Riblet [1] in his Discussion section makes two
points about the doctoral dissertation of H. Seidel
(Polytechnic Institute of Brooklyn, N. Y., May 1954):

1) “He (Seidel) does not introduce a complex variable equal to

¢ (equal to —z cot @ in Riblet’s notation) and thus does not
have Richards’ [7] theorem available for proving physical
realizability.”

2) “... he makes no point of thesecond condition for the physical
realizability of an impedance function.”

Working backwards in the order of objections, Riblet’s
“second condition” is that stated in (28) of the pres-
ent paper, and it is seen to derive directly from the
unity determinant condition of the transfer operator
given in (13). The doctoral dissertation of 1954 is repro-
duced in essence in [2], and the unity determinant con-
dition is given in (19) of that paper. The unity deter-
minant condition followed as a consequence of the mode
of realization which required only an assertion that the
insertion loss function be of the form L =1+ R,%(cos ).
The very fact that the synthesis achieved was composed
of reciprocal elements required this consequence.

As we have shown in the present paper, a more general
condition of realizability is only the requirement that
the loss function be even in cos § and always greater than
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or equal to unity. There is no requirement whatsoever
on the sufficiency of thisstatement that there be a unity
determinant, although a network reciprocity statement
tantamount to a unit determinant is required to show
the necessity and completeness of the synthesis. Riblet,
in insisting that a special point must be made of his
second condition, is in error for a statement of realiza-
bility based on insertion loss.

In response to the first objection cited, the choice of a
PRF theoretic method of proof of realizability over a
root locus approach is strictly fielder’s choice. If any
justification need be given for a choice of $ of the form
of sin # as opposed to cot 0, it is given in Section IV of
Part I of this paper. Nevertheless, roots of cot § were in-
volved in [2] [(13b) of that paper] and a simple, ade-
quate, root locus proof of realizability was given in-
volving only the nature of the loss function.?

Instead of the two statements required by Riblet
using a PRF mode of description to produce realizability
only a single statement is required using an insertion loss
description. This lack of economy of statement is re-
flected in a more recent paper by Levy which motivates
him to state an incorrect theorem. It reads:

Any insertion loss function of the form
L =14 [fi(a cos 8 + b sin ]2 + [fola cos 8 + b sin 6) |2

can be realized as a stepped impedance filter with real positive char-
acteristic impedances if the function L=1-f2(w) +f2?(w) having all
its poles at infinity, is realizable as a two-port ladder network consist-
ing of simple lossless series reactances and shunt susceptances ter-
minated by resistances.*

That this theorem is incorrect may be observed simply
by placing fi(w) =fo(w) =w so that L=1-+20* This is
realizable by a relative series reactance or shunt sus-
ceptance of value 2+/2 inserted between terminations.
By Levy’s theorem, L=142(a cos §+b sin #)* is equally
realizable for all values of ¢ and b in terms of a stepped
impedance filter. Since the insertion loss of a reactive
two-port is unaffected by time reversal it is even in 6.
This last loss function cannot be even unless either a or
b is zero.

This theorem is unnecessary if we recognize that a
necessary condition of realizability is that fi?(w) +72%(w)
be even in w together with the condition that e or b
vanish. [t is sufficient to meet the PRF conditions since
L is even in # and greater than unity and it automati-
cally meets Riblet’s “second condition” since the proto-
type ladder structure has a transfer matrix determinant
of unity. Little of substance is added to Riblet's two
criteria for realizability. In the development of his
couplers Levy chose the loss function

L=14 8 — ki70«)

3 Seidel, H., Synthesis of a class of microwave filters, IRE Trans.
on Microwave Theory and Techniques, vol MTT-5, Apr 1957, p 112.

4Levy, R., General synthesis of asymmetric multi-element
coupled-transmission-line directional coupler, IEEE T'rans. on Micro-
wave Theory and Technigues, vol MTT-11, Jul 1963, p 235.
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where the transformation w— (cos /cos 8,) fortunately
produced no fundamental violations.

The use of a PRF description requires vet another re-
striction over the two of Riblet in that Young [8] adds
a third to the effect that numerator and denominator
polynomials of the impedance function be of the sanie
degree. The completeness of realizability of an appro-
priate loss function guarantees this is so. The specific
demonstration of this condition follows from (18) which
shows that the first impedance of the stepped array is
defined by a ratio of the leading coefficients of numera-
tor and denominator, respectively, in the impedance
function. A difference of degree would cause one of these
coefficients to vanish, producing either a zero or an in-
finite characteristic impedance section. Since this neces-
sarily implies infinite insertion loss, contrary to hypoth-
esis, the polynomials are of equal degree.

It is not without reason that a positive real function
theory approach requires a greater multiplicity of re-
strictions for realizability than does the insertion loss
statement using a root locus procedure. PRF theory is
very general and covers many classes of structures of
which the cascaded transmission line structure is but
one. It is, therefore, necessary to impose these added
restrictions to diminish the initial excessive generality.
The insertion loss function, on the other hand, contains
within its very formulation the restrictions associated
with this class of structures and, as we have shown, is
adequate for realizability to within the two obvious
physical restrictions that it 1) be passive (L>1), 2) be
time reversible (L(; sin f) = L(—1 sin 6)).

ACKNOWLEDGMENT

The major portion of this paper was developed by the
authors during their mutual term of employment at
Merrimac Research and Development Inc. and was
completed while at their present respective organiza-
tions. They should like particularly to thank Mr. P. Ter-
ranova of Merrimac for his encouragements in this
activity.

REFERENCES

[1] Riblet, H. J., General synthesis of quarter-wave impedance trans-
formers, IRE Trans. on Microwave Theory and Techniques, vol
MTT-5, Jan 1957, pp 36-43.

[2] Seidel, H., Synthesis of a class of microwave filters, IRE Trans.
on Microwave Theory and Technigues, vol MTT-5, Apr 1957,
pp 107-114,

[3] Feldshtein, A. L., Synthesis of stepped directional couplers,
Radiotekhn. © Elektron., vol 6, Feb 1961, pp 234-240.

[4] Young, L., Proc. IEEE, vol 110, Part B, Feb 1963, pp 275-281.

[5] Levy, R., General synthesis of asymmetric multi-element
coupled-transmission-line directional couplers, TEEE Trans. on
Microwave Theory and Techniques, vol MTT-11, Jul 1963,
pp 226-237.

[6] Darlington, S., Synthesis of reactance four-poles which produce
prescribed insertion loss characteristics, J. Math. Phys., vol 18,
Sept 1939, pp 256-353.

[7] Richards, P. L., A special class of functions with positive real
part in a half plane, Duke Math. J., vol 14, Sep 1947, pp 777-786,
theorem 0.

[8] Young, L., Concerning Riblet’s theorem (Correspondence), IRE
Trans. on Microwave Theory and Techniques, vol MTT-7, Oct
1959, pp 477-478.



